Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(12): 5070-5085, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635302

RESUMO

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Assuntos
Anodontia , Anormalidades Craniofaciais , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação/genética
2.
Front Neurosci ; 17: 1167047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179550

RESUMO

Introduction: RNA polymerase III (Pol III) is a critical enzymatic complex tasked with the transcription of ubiquitous non-coding RNAs including 5S rRNA and all tRNA genes. Despite the constitutive nature of this enzyme, hypomorphic biallelic pathogenic variants in genes encoding subunits of Pol III lead to tissue-specific features and cause a hypomyelinating leukodystrophy, characterized by a severe and permanent deficit in myelin. The pathophysiological mechanisms in POLR3- related leukodystrophy and specifically, how reduced Pol III function impacts oligodendrocyte development to account for the devastating hypomyelination seen in the disease, remain poorly understood. Methods: In this study, we characterize how reducing endogenous transcript levels of leukodystrophy-associated Pol III subunits affects oligodendrocyte maturation at the level of their migration, proliferation, differentiation, and myelination. Results: Our results show that decreasing Pol III expression altered the proliferation rate of oligodendrocyte precursor cells but had no impact on migration. Additionally, reducing Pol III activity impaired the differentiation of these precursor cells into mature oligodendrocytes, evident at both the level of OL-lineage marker expression and on morphological assessment, with Pol III knockdown cells displaying a drastically more immature branching complexity. Myelination was hindered in the Pol III knockdown cells, as determined in both organotypic shiverer slice cultures and co-cultures with nanofibers. Analysis of Pol III transcriptional activity revealed a decrease in the expression of distinct tRNAs, which was significant in the siPolr3a condition. Discussion: In turn, our findings provide insight into the role of Pol III in oligodendrocyte development and shed light on the pathophysiological mechanisms of hypomyelination in POLR3-related leukodystrophy.

3.
Front Neurol ; 14: 1148377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077564

RESUMO

Introduction: Rare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing. Methods: Each of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease. Results: Following different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas. Discussion: This study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.

4.
MethodsX ; 10: 102051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814689

RESUMO

Immunopanning is an efficient and reliable method for isolating primary cells from rodent brain tissue, making it a valuable tool for researchers interested in in vitro glial models. Here, we present an immunopanning protocol optimized for the isolation of Platelet-Derived Growth Factor Receptor Alpha positive (PDGFRα+) oligodendrocyte precursor cells (OPCs) from mouse brain tissue that results in a high yield of pure OPCs from minimal quantities of starting tissue.•The protocol presented here is optimized for a PDGFRα-dependent selection of mouse OPCs using a commercial antibody, accounting for the relatively weaker adhesion of OPCs to the anti-PDGFRα plate as compared to other oligodendrocyte lineage markers (e.g., MOG).•A modified papain digestion step, with 95% O2/5% CO2 gas that is humidified prior to perfusion, significantly enhances the yield of dissociated cells and final yield of OPCs.•Isolating OPCs at the PDGFRα+ stage permits the expansion of cells in culture, facilitating studies using transgenic mice, and enables studies on the development of the oligodendrocyte lineage without the spatial and temporal complexity of in vivo studies.

5.
ACS Med Chem Lett ; 13(4): 665-673, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450377

RESUMO

Phospholipase D (PLD) is a phospholipase enzyme responsible for hydrolyzing phosphatidylcholine into the lipid signaling molecule, phosphatidic acid, and choline. From a therapeutic perspective, PLD has been implicated in human cancer progression as well as a target for neurodegenerative diseases, including Alzheimer's. Moreover, knockdown of PLD rescues the ALS phenotype in multiple Drosophila models of ALS (amyotrophic lateral sclerosis) and displays modest motor benefits in an SOD1 ALS mouse model. To further validate whether inhibiting PLD is beneficial for the treatment of ALS, a brain penetrant small molecule inhibitor with suitable PK properties to test in an ALS animal model is needed. Using a combination of ligand-based drug discovery and structure-based design, a dual PLD1/PLD2 inhibitor was discovered that is single digit nanomolar in the Calu-1 cell assay and has suitable PK properties for in vivo studies. To capture the in vivo measurement of PLD inhibition, a transphosphatidylation pharmacodynamic LC-MS assay was developed, in which a dual PLD1/PLD2 inhibitor was found to reduce PLD activity by 15-20-fold.

8.
Neurol Genet ; 6(3): e425, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32582862

RESUMO

OBJECTIVE: To expand the phenotypic spectrum of severity of POLR3-related leukodystrophy and identify genotype-phenotype correlations through study of patients with extremely severe phenotypes. METHODS: We performed an international cross-sectional study on patients with genetically proven POLR3-related leukodystrophy and atypical phenotypes to identify 6 children, 3 males and 3 females, with an extremely severe phenotype compared with that typically reported. Clinical, radiologic, and molecular features were evaluated for all patients, and functional and neuropathologic studies were performed on 1 patient. RESULTS: Each patient presented between 1 and 3 months of age with failure to thrive, severe dysphagia, and developmental delay. Four of the 6 children died before age 3 years. MRI of all patients revealed a novel pattern with atypical characteristics, including progressive basal ganglia and thalami abnormalities. Neuropathologic studies revealed patchy areas of decreased myelin in the cerebral hemispheres, cerebellum, brainstem, and spinal cord, with astrocytic gliosis in the white matter and microglial activation. Cellular vacuolization was observed in the thalamus and basal ganglia, and neuronal loss was evident in the putamen and caudate. Genotypic similarities were also present between all 6 patients, with one allele containing a POLR3A variant causing a premature stop codon and the other containing a specific intronic splicing variant (c.1771-7C>G), which produces 2 aberrant transcripts along with some wild-type transcript. CONCLUSIONS: We describe genotype-phenotype correlations at the extreme end of severity of the POLR3-related leukodystrophy spectrum and shed light on the complex disease pathophysiology.

9.
Front Cell Neurosci ; 14: 631802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633543

RESUMO

Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.

11.
J Immunol ; 196(8): 3375-84, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962228

RESUMO

Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-ß compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-ß-treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-ß-treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair.


Assuntos
Esclerose Múltipla/imunologia , Bainha de Mielina/imunologia , Células Mieloides/imunologia , Fagocitose/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Adulto , Encéfalo/citologia , Encéfalo/imunologia , Polaridade Celular/fisiologia , Células Cultivadas , Regulação para Baixo , Humanos , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Macrófagos/imunologia , Microglia/citologia , Microglia/imunologia , Esclerose Múltipla/patologia , Proteína S/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima , c-Mer Tirosina Quinase
12.
Ann Clin Transl Neurol ; 3(1): 27-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26783548

RESUMO

OBJECTIVE: Dimethyl fumarate (DMF), a therapy for relapsing-remitting multiple sclerosis (RRMS), is implicated as acting on inflammatory and antioxidant responses within both systemic immune and/or central nervous system (CNS) compartments. Orally administered DMF is rapidly metabolized to monomethyl fumarate (MMF). Our aim was to analyze the impact of fumarates on antiinflammatory and antioxidant profiles of human myeloid cells found in the systemic compartment (monocytes) and in the inflamed CNS (blood-derived macrophages and brain-derived microglia). METHODS: We analyzed cytokine and antioxidant expression in monocytes from untreated or DMF-treated RRMS patients and controls, and in monocyte-derived macrophages (MDMs) and microglia isolated from adult and fetal human brain tissue. RESULTS: Monocytes from multiple sclerosis (MS) patients receiving DMF had reduced expression of the proinflammatory micro-RNA miR-155 and of antioxidant genes HMOX1 and OSGIN1 compared to untreated MS patients; similar changes were observed in patients receiving FTY720 and/or natalizumab. In vitro addition of DMF but not MMF to MDMs and microglia inhibited lipopolysaccharide-induced production of inflammatory cytokines and increased expression of the antioxidant gene HMOX1 in the absence of significant cytotoxicity. INTERPRETATION: Our in vivo-based observations that effects of DMF therapy on systemic myeloid cell gene expression are also observed with FTY720 and natalizumab therapy suggests that the effect may be indirect, reflecting reduced overall disease activity. Our in vitro results demonstrate significant effects of DMF but not MMF on inflammation and antioxidant responses by MDMs and microglia, questioning the mechanisms whereby DMF therapy would modulate myeloid cell properties within the CNS.

13.
Semin Immunopathol ; 37(6): 639-49, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259734

RESUMO

This review focuses on the effects of the agents currently approved (or in late clinical trials) as therapies for multiple sclerosis (MS) on the glial cell populations of the central nervous system (CNS). These are comprised of astrocytes, microglia, and oligodendrocytes (OLs), and their progenitors (OPCs). Although the efficacy of these agents is to date established only for the relapsing component of the disease and linked to effects on the systemic immune system, each has been examined with regard to effects on the CNS compartment. The impact of therapies on glia would include modulating these cells immune reactivity, which is considered to underlie the tissue injury process in MS and to any subsequent repair process. As reviewed, these agents can exert their effects either indirectly by modulating the constituents of the systemic immune system or directly depending on their capacity to traverse the blood brain barrier (BBB). Most available data has been derived from administration of these agents in animal models or application to glial cells in vitro. The challenge remains of translating these observations into effective means to impact on the progressive course of disease and reverse existent disabilities.


Assuntos
Astrócitos/imunologia , Imunossupressores/uso terapêutico , Microglia/imunologia , Esclerose Múltipla/tratamento farmacológico , Oligodendroglia/imunologia , Anticorpos Monoclonais/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Cloridrato de Fingolimode/uso terapêutico , Humanos , Interferon beta/uso terapêutico , Esclerose Múltipla/imunologia
14.
Brain ; 138(Pt 5): 1138-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25823474

RESUMO

The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.


Assuntos
Lesões Encefálicas/terapia , Encéfalo/crescimento & desenvolvimento , Homeostase/fisiologia , Microglia/citologia , Neurogênese/fisiologia , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Humanos , MicroRNAs/metabolismo
15.
Neurol Neuroimmunol Neuroinflamm ; 2(2): e80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25821842

RESUMO

OBJECTIVE: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. METHODS: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. RESULTS: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. CONCLUSION: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...